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We compute the critical Josephson current through a single-molecule junction. As a model for a molecule
with a bistable conformational degree of freedom, we study an interacting single-level quantum dot coupled to
a two-level system and weakly connected to two superconducting electrodes. We perform a lowest-order
perturbative calculation of the critical current and show that it can significantly change due to the two-level
system. In particular, the �-junction behavior, generally present for strong interactions, can be completely
suppressed.
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I. INTRODUCTION

The swift progress in molecular electronics achieved dur-
ing the past decade has mostly been centered around a de-
tailed understanding of charge transport through single-
molecule junctions,1,2 where quantum effects generally turn
out to be important. When two superconducting �instead of
normal� electrodes with the same chemical potential but a
phase difference � are attached to the molecule, the Joseph-
son effect3 implies that an equilibrium current I��� flows
through the molecular junction. Over the past decade, experi-
ments have observed gate-tunable Josephson currents
through nanoscale junctions,4–22 including out-of-
equilibrium cases, and many different interesting phenomena
have been uncovered. In particular, the current-phase relation
has been measured by employing a superconducting quan-
tum interference device.14,15,19 For weakly coupled elec-
trodes, the current-phase relation is3

I��� = Ic sin��� , �1�

with the critical current Ic.
The above questions have also been addressed by many

theoretical works. It has been shown that the repulsive
electron-electron �e-e� interaction U�0, acting on electrons
occupying the relevant molecular level, can have a major
influence on the Josephson current.23–36 For intermediate-to-
strong coupling to the electrodes, an interesting interplay be-
tween the Kondo effect and superconductivity takes
place.24,28,30–32,35 In the present paper, we address the oppo-
site limit where, for sufficiently large U, a so-called �-phase
can be realized, with Ic�0 in Eq. �1�. In the �-regime, �
=� corresponds to the ground state of the system �or to a
minimum of the free energy for finite temperature�, in con-
trast to the usual 0-state with Ic�0, where �=0 in the
ground state.37 The sign change in Ic arises due to the block-
ing of a direct Cooper pair exchange when U is large.
Double occupancy on the molecular level is then forbidden,
and the remaining allowed processes generate the sign
change in Ic.

23–25,27,29,34 The most natural way to explain the
�-junction behavior is by perturbation theory in the tunnel
couplings connecting the molecule to the electrodes. Experi-
mental observations of the �-phase were recently reported
for InAs nanowire dots14 and for nanotubes,15,38 but a
�-junction is also encountered in superconductor-

ferromagnet-superconductor structures.39,40 Accordingly, the-
oretical works have also analyzed spin effects in molecular
magnets coupled to superconductors.41–43

The impressive experimental control over supercurrents
through molecular junctions reviewed above implies that
modifications of the supercurrent due to vibrational modes of
the molecule play a significant and observable role.34,44–46

We have recently discussed how a two-level system �TLS�
coupled to the dot’s charge is affected by the Josephson cur-
rent carried by Andreev states.47 For instance, two conforma-
tional configurations of a molecule may realize such a TLS
degree of freedom. Experimental results for molecular break
junctions with normal leads were interpreted using such
models,48–53 but the TLS can also be created artificially using
a Coulomb-blockaded double dot.47 A detailed motivation for
our model, where the Pauli matrix �z in TLS space couples
to the dot’s charge, and its experimental relevance has been
given in Refs. 47 and 53. While our previous work47 studied
the Josephson-current-induced switching of the TLS, we here
address a completely different parameter regime character-
ized by weak coupling to the electrodes, and focus on the
Josephson current itself. We calculate the critical current Ic in
Eq. �1� using perturbation theory in these couplings, allow-
ing for arbitrary e-e interaction strength and TLS parameters.
A similar calculation has been reported recently,34 but for a
harmonic oscillator �phonon mode� instead of the TLS. Our
predictions can be tested experimentally in molecular break
junctions using a superconducting version of existing48–50

setups.
The remainder of this paper has the following structure. In

Sec. II, we discuss the model and present the general pertur-
bative result for the critical current. For tunnel matrix ele-
ment W0=0 between the two TLS states, the result allows for
an elementary interpretation, which we provide in Sec. III.
The case W0�0 is then discussed in Sec. IV, followed by
some conclusions in Sec. V. Technical details related to Sec.
III can be found in the Appendix. We mostly use units where
e=�=kB=1.

II. MODEL AND PERTURBATION THEORY

We study a spin-degenerate molecular dot level with
single-particle energy 	d and on-site Coulomb repulsion U
�0, coupled to the TLS and to two standard s-wave BCS
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superconducting banks �leads�. The TLS is characterized by
the �bare� energy difference E0 of the two states, and by the
tunnel matrix element W0. The model Hamiltonian studied in
this paper is motivated by Refs. 48 and 53 where it was
employed to successfully describe break junction experi-
ments �with normal-state leads�. It reads

H = H0 + Htun + Hleads, �2�

where the coupled dot-plus-TLS part is

H0 = −
E0

2
�z −

W0

2
�x + �	d +




2
�z��n↑ + n↓� + Un↑n↓ �3�

with the occupation number ns=ds
†ds for dot fermion ds with

spin s= ↑ ,↓. Note that the TLS couples with strength 
 to the
dot’s charge. Indeed, assuming some reaction coordinate X
describing molecular conformations, the dipole coupling to
the dot is �X�n↑+n↓�, just as for electron-phonon
couplings.44,45,48,49 If the potential energy V�X� is bistable,
the low-energy dynamics of X can be restricted to the lowest
quantum state in each well and leads to Eq. �3�. The TLS
parameters and the dipole coupling energy 
 can be defined
in complete analogy to Refs. 48 and 53, and typical values
for 
 in the meV range are expected, comparable to typical
charging energies U. Moreover, the electron operators ck�s,
corresponding to spin-s and momentum-k states in lead �
=L /R, are governed by a standard BCS Hamiltonian with
complex order parameter L/Re�i�/2 �with L/R�0�, respec-
tively,

Hleads = �
k�s

	k�ck�s
† ck�s − �

k�

�ei��/2�ck�↑
† c−k,�↓

† + H.c.� ,

�4�

where 	k� is the �normal-state� dispersion relation. Finally,
the tunneling Hamiltonian is

Htun = �
�s

�HT�s
�−� + HT�s

�+� �, HT�s
�−� = �

k
tk�ck�s

† ds, �5�

where HT�s
�−� describes tunneling of an electron with spin s

from the dot to lead � with tunnel amplitude tk�, and the
reverse process is generated by HT�s

�+� =HT�s
�−�†.

The Josephson current I��� at temperature T=�−1 follows
from the equilibrium �imaginary-time� average,

I = 2 Im�Te−�0
�d�Htun���HT�s

�−� � , �6�

where �=L /R and s= ↑ ,↓ can be chosen arbitrarily by virtue
of current conservation and spin-SU�2� invariance, and T is
the time-ordering operator. Equation �6� is then evaluated by
lowest-order perturbation theory in Htun. The leading contri-
bution is of fourth order in the tunnel matrix elements and
can be evaluated in a similar manner as in Ref. 34. We as-
sume the usual wide-band approximation for the leads with
k-independent tunnel matrix elements, and consider tempera-
tures well below both BCS gaps, T�L,R. Putting �=L and
s=↑, after some algebra, the Josephson current takes form
�1� with the critical current,

Ic =
2

�2	

L


� �LLdE

�E2 − L
2	


R


� �RRdE�

�E�2 − R
2

C�E,E�� . �7�

We define the hybridizations ��=��F
t�
2, with �normal-
state� density of states �F in the leads. The function C in Eq.
�7� can be decomposed according to

C�E,E�� = �
N=0

2

CN�E,E�� , �8�

with contributions CN for fixed dot occupation number N
=n↑+n↓= �0,1 ,2. For given N, the two eigenenergies �la-
beled by �=�� of the dot-plus-TLS Hamiltonian H0 in Eq.
�3� are

EN
�=� = N	d + U�N,2 +

�

2
�N, �9�

with the scale

�N = ��E0 − N
�2 + W0
2. �10�

The occupation probability for the state �N ,�� is

pN
� =

1

Z
e−�EN

�
�1 + �N,1� , �11�

where Z ensures normalization, �N�pN
� =1. With the propaga-

tor

G��E� =
1

E − �
, �12�

we then find the contributions CN in Eq. �8�,

C0�E,E�� = �
�1¯�4

�p0
�2T1010

�1�2�3�4GE
0
�2−E

1
�3�E�GE

0
�2−E

1
�1�E��GE

0
�2−E

0
�4�E + E�� + 2p0

�4T1210
�1�2�3�4GE

0
�4−E

1
�1�E�GE

0
�4−E

1
�3�E��GE

0
�4−E

2
�2�0�� ,

�13�

C1�E,E�� = − �
�1¯�4

�T1210
�1�2�3�4�p1

�1GE
1
�1−E

0
�4�E�GE

1
�1−E

2
�2�E�GE

1
�1−E

1
�3�E + E�� + p1

�3GE
1
�3−E

0
�4�E��GE

1
�3−E

2
�2�E��GE

1
�3−E

1
�1�E + E���

+
p1

�1

2
T1010

�1�2�3�4GE
1
�1−E

0
�4�E�GE

1
�1−E

0
�2�E��GE

1
�1−E

1
�3�E + E�� +

p1
�2

2
T2121

�1�2�3�4GE
1
�2−E

2
�3�E�GE

1
�2−E

2
�1�E��GE

1
�2−E

1
�4�E + E��� ,

�14�

SCHULZ, ZAZUNOV, AND EGGER PHYSICAL REVIEW B 79, 184517 �2009�

184517-2



C2�E,E�� = �
�1¯�4

�p2
�1T2121

�1�2�3�4GE
2
�1−E

1
�4�E�GE

2
�1−E

1
�2�E��GE

2
�1−E

2
�3�E + E�� + 2p2

�2T1210
�1�2�3�4GE

2
�2−E

1
�1�E�GE

2
�2−E

1
�3�E��GE

2
�2−E

0
�4�0�� .

�15�

Here, we have used the matrix elements

TN1N2N3N4

�1�2�3�4 = Tr�AN1

�1AN2

�2AN3

�3AN4

�4� , �16�

with the 2�2 matrices �in TLS space�

AN
� =

1

2
�1 �

�E0 − N
��z + W0�x

�N
� .

For T=0, it can be shown that C0 and C2 are always positive,
while C1 yields a negative contribution to the critical current.
When C1 outweighs the two other terms, we arrive at the
�-phase with Ic�0.

Below, we consider identical superconductors, L=R
=, and assume 
�0. It is useful to define the reference
current scale,

I0 =
�L�R

2

2e

�2�
. �17�

Within lowest-order perturbation theory, the hybridizations
�L and �R only enter via Eq. �17� and can thus be different.
Equation �7� provides a general but rather complicated ex-
pression for the critical current, even when considering the
symmetric case L=R. In the next section, we will there-
fore first analyze the limiting case W0=0.

III. NO TLS TUNNELING

When there is no tunneling between the two TLS states,
W0=0, the Hilbert space of the system can be decomposed
into two orthogonal subspaces H+ � H−, with the fixed con-
formational state �=� in each subspace. Equation �9� then
simplifies to

EN
� = �	d +

�


2
�N + U�N,2 −

�E0

2
. �18�

One thus arrives at two decoupled copies of the usual inter-
acting dot problem �without TLS�, but with a shifted dot
level 	�=	d+�
 /2 and the “zero-point” energy shift
−�E0 /2. As a result, the critical current Ic in Eq. �7� can be
written as a weighted sum of the partial critical currents
Ic�	�� through an interacting dot level �without TLS� at en-
ergy 	�,

Ic = �
�=�

p�Ic�	�� , �19�

where p�=�NpN
� with Eqs. �11� and �18� denotes the prob-

ability for realizing the conformational state �. The current
Ic�	� has already been calculated in Ref. 34 �in the absence

of phonons�, and has been reproduced here. In order to keep
the paper self-contained, we explicitly specify it in the Ap-
pendix.

In order to establish the relevant energy scales determin-
ing the phase diagram, we now take the T=0 limit. Then the
probabilities �Eq. �11�� simplify to pN

� =�NN̄���̄, where E
N̄

�̄

=min�N,���EN
�� is the ground-state energy of H0 for W0=0.

Depending on the system parameters, the ground state then

realizes the dot occupation number N̄ and the TLS state �̄.

The different regions �N̄ , �̄� in the E0−	d plane are shown in
the phase diagram in Fig. 1. The corresponding critical cur-
rent in each of these regions is then simply given by Ic
= Ic�	�̄�.

By analyzing the dependence of the ground-state energy
on the system parameters, one can always �even for W0�0�
write the function C�E ,E�� in Eq. �7� as

C�E,E�� = ���− − 	d�C2 + ��	d − �−����+ − 	d�C1

+ ��	d − �+�C0, �20�

where � is the Heaviside function and the energies ��

=���U ,
 ,E0� are the boundaries enclosing the �-phase re-

gion with N̄=1, i.e., �+��−� denotes the boundary between the

N̄=0 and N̄=1 �the N̄=1 and N̄=2� regions, see Fig. 1. Ex-
plicit results for �� follow from Eq. �18� for W0=0. For E0

(2,−)

(0,−)

(0,+)

0

λ

0

(1,+)

−λ/2 λ/2λ/2 − U

λ/2−U

2λ U
λ

E

dε

2λ

(1,−)

(2,+)
0

λ/2

(2,−)

(0,+)

(0,−)

(2,+)

(1,−)

(1,+)

FIG. 1. Ground-state phase diagram in the E0−	d plane for

W0=0. Different regions �N̄ , �̄� are labeled according to the ground-

state dot occupation number N̄=0,1 ,2 and the conformational state
�̄=�. Dark areas correspond to �-junction behavior. The charge-
degeneracy line 	d=−U /2 is indicated as dashed line. Main panel:

�U. Inset: 
�U, where no �-junction behavior is possible for
U�E0�2
−U.
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�0�E0�2
� and arbitrary N̄, the ground state is realized
when �̄=−��̄=+�, leading to �+=
 /2��+=−
 /2�. In both
cases, the other boundary energy follows as �−=�+−U. In the
intermediate cases, with �0= 1

2 �
−U−E0�, we find for 0
�E0�
,

�+ = max�
/2 − E0,�0�, �− = min�
/2 − U,�0� , �21�

while for 
�E0�2
, we obtain

�+ = max�− 
/2,�0�, �− = min��0,
/2 + 2�0� . �22�

These results for �� are summarized in Fig. 1. Remarkably,
in the E0−	d plane, the phase diagram is inversion-
symmetric with respect to the point �E0=
 ,	d=−U /2�. Fur-
thermore, we observe that for many choices of E0, one can
switch the TLS between the �̄=� states by varying 	d, see
Fig. 1.

We now notice that Eq. �20� implies the same decompo-
sition for the critical current �Eq. �7��. We can therefore im-

mediately conclude that the �-junction regime �where N̄=1�
can exist only when �+��−. This condition is always met
away from the window 0�E0�2
. However, inside that
window, Eqs. �21� and �22� imply that for sufficiently strong
dot-TLS coupling, 
�U, the �-phase may disappear com-
pletely. Indeed, for U�E0�2
−U, no �-phase is possible
for any value of 	d once 
 exceeds U. The resulting ground-
state critical current is shown as a function of the dot level 	d
for two typical parameter sets in Fig. 2. The inset shows a
case where the �-phase has been removed by a strong cou-
pling of the interacting dot to the TLS. The above discussion
shows that the �-junction regime is very sensitive to the
presence of a strongly coupled TLS.

IV. FINITE TLS TUNNELING

Next we address the case of finite TLS tunneling, W0
�0. Due to the �x term in H0, the critical current cannot be
written anymore as a weighted sum �see Eq. �19�� and no
abrupt switching of the TLS happens when changing the sys-
tem parameters. Nevertheless, we now show that the size and
even the existence of the �-phase region still sensitively de-
pend on the TLS coupling strength �and on the other system
parameters�. In particular, the �-phase can again be com-
pletely suppressed for strong 
.

For finite W0, the ground-state critical current is obtained
from Eq. �20�, where the CN are given by Eqs. �13�–�15� and
the �-phase border energies �� are replaced by

�+ =
1

2
��1 − �0�, �− =

1

2
��2 − �1 − 2U� . �23�

The �N are defined in Eq. �10�. Compared to the W0=0 case
in Fig. 1, the phase diagram boundaries now have a smooth
�smeared� shape due to the TLS tunneling. Nevertheless, the
critical current changes sign abruptly when the system pa-
rameters are tuned across such a boundary. The energies �Eq.
�23�� are shown in Fig. 3 for various values of W0 in the
E0−	d plane. In between the �+ and �− curves, the �-phase is
realized. From the inset of Fig. 3, we indeed confirm that the
�-phase can again be absent within a suitable parameter win-
dow. Just as for W0=0, the �-phase vanishes for �+��−, and

the transition between left and right 0-phase occurs at �̄
= ��++�−� /2. For 
E0
�max�
 ,W0�, we effectively recover
the phase diagram for W0=0, since the TLS predominantly
occupies a fixed conformational state.

The corresponding critical current Ic is shown in Fig. 4 for
both a small and a very large TLS tunnel matrix element W0.
In the limit of large W0�max�
 , 
E0
�, see lower panel in
Fig. 4, the dot and the TLS are effectively decoupled since
��z��0 and ��x��sgn�W0�. While this limit is unrealistic

-2 -1 0 1
ε

d

-5

0

5

10

15

20

I
c
/I

0

-2 -1 0 1

0

10

20

FIG. 2. �Color online� Ground-state critical current Ic as a func-
tion of 	d for W0=0. Ic is given in units of I0, see Eq. �17�. In all
figures, the energy scale is set by =1. Dashed �red�, dotted �blue�
and solid �black� curves represent the partial critical currents Ic�	+�,
Ic�	−�, and the realized critical current Ic, respectively. Main panel:
E0=0.8,
=0.6,U=1, such that �+��−. This corresponds to the
�-phase region with 
�E0�2
 in the main panel of Fig. 1. Inset:
E0=0.6,
=0.8,U=0.5, where �+��− and no �-junction behavior
is possible. This corresponds to U�E0�2
−U, see inset of Fig. 1.
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FIG. 3. �Color online� Phase diagram and boundary energies ��

enclosing the �-phase for finite W0. Main figure: 
=0.4 and U
=0.5, where a �-phase is present; W0=0,0.2 and 5, for solid �blue�,
dashed �black�, and dash-dotted �red� curves, respectively. Inset: 

=0.7 and U=0.5, where the �-phase vanishes; W0=0,0.3 and 3, for
solid �blue�, dashed �black�, and dash-dotted �red� curves,
respectively.
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for molecular junctions, it may be realized in a side-coupled
double-dot system.47 Finally we note that, unlike for W0=0,
the perturbative result for the critical current diverges at the

point where the �-phase vanishes, i.e., for 	d= �̄. This diver-
gence is an artifact of perturbation theory and is caused by

the appearance of the factor GE0
−−E2

−�0�= �	d− �̄�−1 in Eqs. �13�
and �15�.

V. CONCLUSIONS

In this paper, we have presented a perturbative calculation
of the critical Josephson current, Ic, through an interacting
single-level molecular junction side coupled to a two-level
system. Such a TLS is a simple model for a bistable confor-
mational degree of freedom, and has previously been intro-
duced in the literature.47,48,53 Our perturbative calculation as-
sumes very weak coupling to attached superconducting
reservoirs. The ground-state critical current can then be com-
puted exactly for otherwise arbitrary parameters. Our main
finding is that the �-phase with Ic�0 is quite sensitive to the
presence of the TLS. In particular, for strong coupling 
 of
the molecular level to the TLS as compared to the Coulomb
energy U on the level, the �-phase can disappear altogether.
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APPENDIX: PARTIAL CRITICAL CURRENTS

In this appendix, we provide the partial critical current
Ic�	�� which appears in the calculation for W0=0, see Sec.
III. In the absence of TLS tunneling, the matrix elements
�Eq. �16�� simplify to

TN1N2N3N4

�1�2�3�4 = �
i=1

4

��̃i,1
+ �

i=1

4

��̃i,−1,

where �̃i=�i sgn�Ni
−E0�. We now rename �̃→� to denote
the conformational state �eigenstate of �z�.

The partial current Ic�	�� corresponding to fixed confor-
mational state �=� is then given by

Ic�	��
I0

= 3�
N
	



� dEdE�CN
��E,E��

��E2 − 2��E�2 − 2�
,

where

CN
��E,E�� = p̃N

�cN
��E,E�� ,

p̃N
� =

1

Z�

e−�EN
�
�1 + �N,1� ,

with Z� such that �Np̃N
� =1. Moreover, the cN

� are given by

c0
��E,E�� =

1

�E + 	���E� + 	��� 1

E + E�
+

2

2	� + U
� ,

c1
��E,E�� = −

1

E + E�
� 1

�E − 	���E + 	� + U�

+
1

�E� − 	���E� + 	� + U�
+

1/2
�E − 	���E� − 	��

+
1/2

�E + 	� + U��E� + 	� + U�� ,

c2
��E,E�� =

1

�E − 	� − U��E� − 	� − U�

�� 1

E + E�
−

2

2	� + U
� .
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FIG. 4. �Color online� List line plots of the W0�0 ground-state critical current Ic �in units of I0� in the E0−	d plane, with 
=0.6 and
U=0.5. The boundaries �� enclosing the �-phase, see also Fig. 3, are indicated as solid �blue� curves. Top panel: small tunnel amplitude,
W0=0.2. Bottom panel: large tunnel amplitude, W0=3.
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